Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №7» городского округа г. Шарья Костромской области

Дополнительная общеобразовательная общеразвивающая программа «Робототехника: манипулятор DOBOT» (техническое направление)

Возраст учащихся, участвующих в реализации программы от 11 до 15 лет

Срок реализации программы - 1 год

Составитель Шмакова С.А. информатики первой квалификационной категории

Пояснительная записка

Рабочая программа составлена в соответствие с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»; «Развитие образовательной робототехники и непрерывного ІТ-образования в Российской Федерации», утвержденной «Агентством инновационного развития» №172-Р от 01.10.2014 (Программа направленна на создание условий для развития дополнительного образования детей в сфере научнотехнического творчества, в том числе и в области робототехники.

Основным содержанием данного курса являются занятия по техническому моделированию, программирования робота.

Актуальность курса заключается в том, что он направлен на формирование творческой личности, живущей в современном мире. DOBOT это робот манипулятор, 3D-принтер, лазерный гравер, ручка для рисования и другие подключаемые модули. Курс ориентирован: на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств: на изучение языков программирования.

На занятиях используются модули наборов серии DOBOT. Используя персональный компьютер или ноутбук с программным обеспечением, элементы из модулей, ученики могут составлять алгоритм управления манипулятором, программировать на выполнения разнообразных задач.

В начале курса, ученики 5-6 класса программируя DOBOT, изучают основы робототехники, программирования и микроэлектроники. Используют алгоритмический язык, встроенное программное обеспечение DOBOT, среду Blockly, Scratch выполняют простые задачи.

Учащиеся 7-9 класса учатся создавать программы, изучают основы программирования DOBOT на языке Python. Используют аппаратно-программные средства Arduino для построения и прототипирования простых систем, моделей и экспериментов в области электроники, автоматики, автоматизации процессов и робототехники.

Итогом изучения курса учениками, является создание. написание программ, защита проектов.

Курс «Робототехника» ориентирован на учащихся 5-9 классов. 2 группы: 5-6 классы и 7-9 классы. Рабочая программа рассчитана на 1 час в неделю для каждой группы, по 36 часов в год, занятия по робототехнике проводятся согласно учебному расписанию.

Цели и задачи курса

Цели курса:

- создание основ алгоритмизации и программирования сиспользованием робота DOBOT;
- использование средства информационных технологий, чтобыпроводить исследования и решать задачи в межпредметной деятельности;
- создание основ информационной компетентности личности, т.е.помочь обучающемуся овладеть методами сбора и накопления информации, современных технологий, их осмыслением, обработкой и практическим применением через урочную, внеурочную деятельность, систему дополнительного образования, в том числе с закреплением и расширением знаний по английскому языку.

Задачи курса:

- научить программировать роботов на базе DOBOT;
- научить работать в среде программирования;
- изучить основы программирования языка Python.
- научить составлять программы управления;
- развивать творческие способности и логическое мышление обучающихся;
- развивать образное, техническое мышление и умение выразить свой замысел;
- развивать умения работать по предложенным инструкциям по управлению моделей;
 - развивать умения творчески подходить к решению задачи;
 - развивать применение знаний из различных областей знаний;
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путемлогических рассуждений;
 - получать навыки проведения физического эксперимента;

- получить опыт работы в творческих группах;
- ведение инновационной, научно-исследовательской, экспериментальной и проектной деятельности в области робототехники.

Концепция курса

Концепция курса основана на необходимости разработки учебнометодического изучения робототехники. комплекса ДЛЯ Изучения робототехники имеет политехническую направленность – дети конструируют механизмы, решающие конкретные задачи. Технология на основе манипулятора DOBOT позволяет развивать навыки управления роботом у детей всех возрастов, поэтому школы, не имеющие политехнического профиля, остро испытывают потребность в курсе робототехники и любых других курсах, развивающих научно-техническое творчество детей.

Процесс освоения, конструирования и программирования роботов выходит за рамки целей и задач, которые стоят перед средней школой,поэтому курс является *инновационным* направлением в дополнительном образовании детей. Это позволяет ребенку освоить достаточно сложные понятия – алгоритм, цикл, ветвление, переменная. Робот DOBOT может стать одним из таких исполнителей. По сравнению с программированием виртуального исполнителя, DOBOT - робот вносит в решение задач элементы исследования и эксперимента, повышает мотивацию учащихся, что будет положительно оценено педагогом.

Методы обучения

- *Познавательный* (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов);
- *Метод проектов* (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей)

- Систематизирующий (беседа по теме, составление систематизирующих таблиц, графиков, схем и т.д.)
- *Контрольный метод* (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий)
- Групповая работа (используется при совместной разработке проектов)

Формы организации учебных занятий

- Урок лекция;
- Урок презентация;
- Практическое занятие;
- Урок соревнование;
- Выставка.

Планируемые результаты

Концепция курса предполагает внедрение инноваций в дополнительное техническое образование учащихся. Поэтому основными планируемыми результатами курса являются:

- 1. Развитие интереса учащихся к роботехнике;
- 2. Развитие навыков управления роботов и конструирования автоматизированных систем;
- 3. Получение опыта коллективного общения при конструировании.
- 4. Развитие интереса учащихся к программированию на языке Python.

Тематическое планирование I группа 5 - 6 класс

№ занятия	Тема занятия, вид занятия	Кол-во часов
1	Введение в курс «Образовательная	2
	робототехника». Что такое робот?	
2	Робот DOBOT . робот манипулятор, 3D-принтер,	2
	лазерный гравер и ручка для рисования. Знакомство.	
3	DOBOT Mooz. 3D-принтер, Лазерный гравер и	2
	Фрезерный станок	
4	Управление манипулятором DOBOT с пульта 2	
5	Pабота с DOBOT Studio. 2	
6	Слежение за курсором мыши. Управление	2
	мышью.	
7	Рисование объектов манипулятором	2
8	Режим обучения или первая простая программа	2
9	Лазерная гравировка изделий	2
10	Программирование в блочной среде	2
11	Программирование движений в среде Blockly	2
12	Робот помогает читать книгу или циклы в Blockly	2
13	Программирование движений в среде Blockly,	2
	Scratch. Выбор проекта	
14	Программирование движений в среде Blockly,	2
	Scratch. Работа над проектом.	
15	Основы микроэлектроники. Знакомство с	2
	устройствами Arduino	
16	Датчики. Машинное зрение для робота.	2
17	Программирование движений в среде Blockly	2
	Работа над проектом.	
18	Защита проекта	2
итого		36

Содержание программы

Введение (2 ч.)

Поколения роботов. История развития робототехники. Применение роботов. Развитие образовательной робототехники. Цели и задачи курса. Техника безопасности.

Знакомство с роботом DOBOT (12ч)

Робот DOBOT . робот манипулятор, 3D-принтер, лазерный гравер и ручка для рисования. Возможности DOBOT. Сменные модули 3D-принтер, Лазерный гравер и Фрезерный станок .Управление манипулятором DOBOT с пульта. Управление мышью. Рисование объектов манипулятором. Выполнение творческого проекта, рисование картины.

Программирование в блочной среде (12ч)

Установка программного обеспечения. Системные требования. Интерфейс. Самоучитель. Панель инструментов. Палитра команд. Рабочее поле. Окно подсказок. Панель конфигурации. Пульт управления роботом. Первые простые программы. Передача и запуск программ. Тестирование робота. Блочная среда Blockly, Scratch.

Основы микроэлектроники (4 ч.)

Знакомство с устройствами Arduino.

Датчик касания (Touch Sensor, подключение и описание)

Датчик звука (Sound Sensor, подключение и описание)

Датчик освещенности (Light Sensor, подключение и описание)

Датчик цвета (Color Sensor, подключение и описание)

Датчик расстояния (Ultrasonic Sensor, подключение и описание)

Подготовка, защита проекта. (4 ч)

Требования к знаниям и умениям учащихся

В результате обучения учащиеся должны

ЗНАТЬ:

- правила безопасной работы;
- основные компоненты DOBOT:

- конструктивные особенности различных модулей и механизмов;
- компьютерную среду, включающую в себя графический язык программирования;
- виды подвижных и неподвижных соединений; основные приемы управления роботом;
- конструктивные особенности различных роботов;
- как передавать программы;
- как использовать созданные программы;
- самостоятельно решать технические задачи в процессе управления роботом (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт управления с использованием специальных элементов, и других объектов и т.д.);
- блочные программы на компьютере для различных роботов;
- корректировать программы при необходимости;
- демонстрировать технические возможности роботов;

УМЕТЬ:

- работать с литературой, с журналами, с каталогами, в интернете (изучать и обрабатывать информацию);
- создавать действующие модели управления робота на основе DOBOT;
- создавать программы на компьютере в среде Blockly, Scratch;
- передавать (загружать) программы;
- корректировать программы при необходимости;
- демонстрировать технические возможности робота.

Тематическое планирование II группа 7 - 9 класс

№ занятия	Тема занятия, вид занятия	Кол-во часов
1	DOBOT . робот манипулятор, 3D-принтер, лазерный гравер и ручка для рисования. Техника безопасности	2
2	3D-принтер, Лазерный гравер и Фрезерный 2 станок .Примеры использования.	
3	DOBOT Mooz. Моделирование 2 производственных линий. Современное производство. Индустрия 4.0	
4	Модуль линейных перемещений для DOBOT	2
5	Конвейерная лента для DOBOT	2
6	Рисование объектов манипулятором	2
7	Лазерная гравировка изделий Режим обучения	2
8	Программирование движений на Blockly и Python.	2
9	Ветвления If Else в Blockly и Python.	2
10	Рекурсия и фрактал через лазерную резку на Blockly и Python.	2
11	Выжигание папоротника Барнсли на Blockly и Python. Фракталы	2
12	Формула прямоугольника. Геометрия и формулы в Blockly и Python.	2
13	Координатная плоскость. Геометрия и формулы в Blockly и Python. Выжигание параболы и гиперболы на листке бумаги	2
14	Программирование на Python. Применение библиотек языка.	2
15	Основы микроэлектроники. Использование устройств Arduino в программировании движения DOBOT	2
16	Датчики. Машинное зрение для робота.	2
17	Программирование движений в среде Python Работа над проектом.	2
18	Защита проекта	2
итого		36

Содержание программы

Робототехника как прикладная наука. DOBOT (14ч)

Способы и области перемещения роботов. Робототехника - техническая основа развития производства. Развитие образовательной робототехники. Цели и задачи курса. Техника безопасности. DOBOT . робот манипулятор, 3D-принтер, лазерный гравер и ручка для рисования. Возможности DOBOT. Рисование объектов манипулятором. Выполнение творческого проекта, выжигание картины.

Программирование на языке Python (14ч)

Python — высокоуровневый язык программирования общего назначения Установка программного обеспечения Python 3.9.5. Системные требования. Интерфейс. Самоучитель. Панель инструментов. Палитра команд. Рабочее поле. Окно подсказок. Панель конфигурации. Первые простые программы. Передача и запуск программ.

Основы микроэлектроники (4 ч.)

Программирование устройств Arduino на языке Python . Датчик касания, датчик звука, датчик освещенности, датчик цвета датчик расстояния

Подготовка, защита проекта. (4 ч)

Требования к знаниям и умениям учащихся

В результате обучения учащиеся должны

ЗНАТЬ:

- правила безопасной работы;
- основные компоненты DOBOT;
- конструктивные особенности различных модулей и механизмов;
- компьютерную среду, включающую в себя графический язык программирования;
- виды подвижных и неподвижных соединений; основные приемы управления роботом;
- конструктивные особенности различных роботов;
- как передавать программы;
- как использовать созданные программы;

- самостоятельно решать технические задачи в процессе управления роботом (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт управления с использованием специальных элементов, и других объектов и т.д.);
- блочные программы на компьютере для различных роботов;
- корректировать программы при необходимости;
- демонстрировать технические возможности роботов;

УМЕТЬ:

- работать с литературой, с журналами, с каталогами, в интернете (изучать и обрабатывать информацию);
- создавать действующие модели управления робота на основе DOBOT;
- создавать программы на компьютере на языке Python;
- передавать (загружать) программы;
- корректировать программы при необходимости;
- демонстрировать технические возможности робота.

Межпредметные связи

No	Предметы, изучаемые	Примеры межпредметных связей
п/п	дополнительно	
1		Расчеты:
		длины траектории;
		числа оборотов и углов движения;
	Математика	в координатной плоскости
		радиуса траектории;
		радиуса длины конструкций и блоков.
2		Расчеты:
		скорости движения;
		силы трения;
		силы упругости конструкций.
	Физика	массы объекта;
		освещенности;
		температуры;
		напряженности магнитного поля.
3		<u>Изготовление</u> :
		дополнительных устройств и
		приспособлений (лабиринты, поля, горки
		и пр.);
	Технология	чертежей и схем;
		электронных печатных плат.
4		Знакомство:
	История	с этапами (поколениями) развития
	1	роботов;
		развитие робототехники в России,
		других странах.
		Изучение:
		первоисточников о возникновении
		терминов «робот», «робототехника»,
		«анероид» и др.
5	Информатика	Написание алгоритмов
		Программирование в среде Python
		Подключение к мобильному телефону
		через Bluetooth;
		Подключение к радиоэлектронным
		устройствам.

Способы оценивания достижений учащихся

Данный курс не предполагает промежуточной или итоговой аттестации учащихся. В процессе обучения учащиеся получают знания и опыт в области дополнительной дисциплины «Робототехника».

Оценивание уровня обученности школьников происходит по окончании курса, после выполнения и защиты индивидуальных проектов. Тем самым они формируют свое портфолио, готовятся к выбору своей последующей профессии, формируют свою политехническую базу.

Условия реализации программы

Компьютерный класс 2 ноутбука DOBOT Magician робот манипулятор. Сменные модули Устройства Arduino Проектор

Список литературы

- 1. Книга «Первый шаг в робототехнику», Д.Г. Копосов.
- 2. Руководство «ПервоРобот. Введение в робототехнику»
- 3. Интернет pecypc http://wikirobokomp.ru.

Сообщество увлеченных робототехникой.

- 4. Интернет pecypc http://www.mindstorms.su. Техническая поддержка для роботов.
- 5. Интернет pecypc http://www.nxtprograms.com. Современные модели роботов.
- 6. Интернет pecypc http://www.prorobot.ru. Курсы робототехники и LEGO-конструирования в школе.
- 7. LEGO MINDSTORMS EV3 Software. Программное обеспечение для mindstorms EV3.